Effective Quantification of Gene Expression Levels in Microarray Images Using a Spot-Adaptive Compound Clustering-Enhancement-Segmentation Scheme

نویسندگان

  • Antonis Daskalakis
  • Dionisis A. Cavouras
  • Panagiotis Bougioukos
  • Spiros Kostopoulos
  • Pantelis Georgiadis
  • Ioannis Kalatzis
  • George C. Kagadis
  • George Nikiforidis
چکیده

A spot-adaptive compound clustering-enhancement-segmentation (CES) scheme was developed for the quantification of gene expression levels in microarray images. The CES-scheme employed 1/griding, for locating spotregions, 2/Fuzzy C-means clustering, for segmenting spots from background, 3/ background noise estimation and spot’s center localization, 4/emphasizing of spot’s outline by the CLAHE image enhancement technique, 5/segmentation by the SRG algorithm, using information from step 3, and 6/microarray spot intensity extraction. Extracted intensities by the CES-Scheme were compared against those obtained by the MAGIC TOOL’s SRG. Kullback-Liebler metric’s values for the CES-Scheme were on average double than MAGIC TOOL’s, with differences ranging from 1.45bits to 2.77bits in 7 cDNA images. Coefficient-ofVariation results showed significantly higher reproducibility (p<0.001) for the CES-Scheme in quantifying gene expression levels. Processing times for 1024x1024 16-bit microarray images containing 6400 spots were 300 and 487 seconds for the CES-Scheme and MAGIC TOOL respectively.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving gene quantification by adjustable spot-image restoration

MOTIVATION One of the major factors that complicate the task of microarray image analysis is that microarray images are distorted by various types of noise. In this study a robust framework is proposed, designed to take into account the effect of noise in microarray images in order to assist the demanding task of microarray image analysis. The proposed framework, incorporates in the microarray ...

متن کامل

A Comparison of Fuzzy Clustering Approaches for Quantification of Microarray Gene Expression

Despite the widespread application of microarray imaging for biomedical imaging research, barriers still exist regarding its reliability for clinical use. A critical major problem lies in accurate spot segmentation and the quantification of gene expression level (mRNA) from the microarray images. A variety of commercial and research freeware packages are available, but most cannot handle array ...

متن کامل

A Novel Hybrid Fuzzy Clustering based approach for the effective Quantification and Analysis of cDNA Microarray Images

In this paper, we propose a hybrid approach for microarray image analysis, which is to quantify the intensity of each spot and locate differentially articulated genes with the aid of image processing and machine learning techniques. Initially we employ a hill-climbing automatic gridding and spot quantification technique, which takes a microarray image (or a sub-grid) as input, and makes no assu...

متن کامل

Development of a Cascade Processing Method for Microarray Spot Segmentation

A new method is proposed for improving microarray spot segmentation for gene quantification. The method introduces a novel combination of three image processing stages, applied locally to each spot image: i/ Fuzzy C-Means unsupervised clustering, for automatic spot background noise estimation, ii/ power spectrum deconvolution filter design, employing background noise information, for spot image...

متن کامل

Modification of the Fast Global K-means Using a Fuzzy Relation with Application in Microarray Data Analysis

Recognizing genes with distinctive expression levels can help in prevention, diagnosis and treatment of the diseases at the genomic level. In this paper, fast Global k-means (fast GKM) is developed for clustering the gene expression datasets. Fast GKM is a significant improvement of the k-means clustering method. It is an incremental clustering method which starts with one cluster. Iteratively ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007